Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
1.
Sci Adv ; 10(5): eadj0396, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306419

RESUMO

The HIV-1 Envelope (Env) glycoprotein facilitates host cell fusion through a complex series of receptor-induced structural changes. Although remarkable progress has been made in understanding the structures of various Env conformations, microsecond timescale dynamics have not been studied experimentally. Here, we used time-resolved, temperature-jump small-angle x-ray scattering to monitor structural rearrangements in an HIV-1 Env SOSIP ectodomain construct with microsecond precision. In two distinct Env variants, we detected a transition that correlated with known Env structure rearrangements with a time constant in the hundreds of microseconds range. A previously unknown structural transition was also observed, which occurred with a time constant below 10 µs, and involved an order-to-disorder transition in the trimer apex. Using this information, we engineered an Env SOSIP construct that locks the trimer in the prefusion closed state by connecting adjacent protomers via disulfides. Our findings show that the microsecond timescale structural dynamics play an essential role in controlling the Env conformation with impacts on vaccine design.


Assuntos
HIV-1 , Produtos do Gene env do Vírus da Imunodeficiência Humana , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Anticorpos Anti-HIV , Conformação Molecular , Multimerização Proteica , Conformação Proteica
2.
J Virol ; 98(2): e0174223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38193694

RESUMO

The HIV-1 Envelope (Env) protein cytoplasmic tail (CT) recently has been shown to assemble an unusual trimeric baseplate structure that locates beneath Env ectodomain trimers. Mutations at linchpin residues that help organize the baseplate impair virus replication in restrictive T cell lines but not in permissive cell lines. We have identified and characterized a second site suppressor of these baseplate mutations, located at residue 34 in the viral matrix (MA) protein, that rescues viral replication in restrictive cells. The suppressor mutation was dependent on the CT to exert its activity and did not appear to affect Env protein traffic or fusion functions in restrictive cells. Instead, the suppressor mutation increased Env incorporation into virions 3-fold and virus infectivity in single-round infections 10-fold. We also found that a previously described suppressor of Env-incorporation defects that stabilizes the formation of MA trimers was ineffective at rescuing Env baseplate mutations. Our results support an interpretation in which changes at MA residue 34 induce conformational changes that stabilize MA lattice trimer-trimer interactions and/or direct MA-CT associations.IMPORTANCEHow HIV-1 Env trimers assemble into virus particles remains incompletely understood. In restrictive cells, viral incorporation of Env is dependent on the Env CT and on the MA protein, which assembles lattices composed of hexamers of trimers in immature and mature viruses. Recent evidence indicates that CT assembles trimeric baseplate structures that require membrane-proximal residues to interface with trimeric transmembrane domains and C-terminal helices in the CT. We found that mutations of these membrane-proximal residues impaired replication in restrictive cells. This defect was countered by a MA mutation that does not localize to any obvious interprotein regions but was only inefficiently suppressed by a MA mutation that stabilizes MA trimers and has been shown to suppress other CT-dependent Env defects. Our results suggest that efficient suppression of baseplate mutations involves stabilization of MA inter-trimer contacts and/or direct MA-CT associations. These observations shed new light on how Env assembles into virions.


Assuntos
Produtos do Gene env , HIV-1 , Produtos do Gene env do Vírus da Imunodeficiência Humana , Antígenos Virais/genética , Linhagem Celular , Produtos do Gene env/química , Produtos do Gene env/genética , HIV-1/fisiologia , Mutação , Domínios Proteicos , Proteínas da Matriz Viral/metabolismo , Replicação Viral/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
3.
Bull Exp Biol Med ; 176(1): 96-100, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38093074

RESUMO

Stabilized trimers of the HIV-1 envelope glycoprotein Env are capable of inducing a potent and sustained broadly neutralizing antibody response in laboratory animals and therefore are attractive targets for anti-HIV vaccine development. In this work, a stable producer of the trimer Env recombinant form CRF63_02A6 of HIV-1 was derived from the CHO-K1 cell line. Using immunochemical assays, the trimers synthesized in CHO-K1 cells were shown to be recognized by both monoclonal broadly neutralizing antibodies and sera from HIV-positive patients. The resulting trimers of the recombinant form CRF63_02A6 of HIV-1 can be used both for structural studies and as a candidate vaccine immunogen against HIV-1.


Assuntos
HIV-1 , Humanos , Animais , HIV-1/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Anticorpos Anti-HIV , Multimerização Proteica
4.
Eur J Pharm Biopharm ; 192: 112-125, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37797679

RESUMO

The encapsulation of HIV-unrelated T helper peptides into liposomal vaccines presenting trimers of the HIV-1 envelope glycoprotein (Env) on the surface (T helper liposomes) may recruit heterologous T cells to provide help for Env-specific B cells. This mechanism called intrastructural help can modulate the HIV-specific humoral immune response. In this study, we used cationic T helper liposomes to induce intrastructural help effects in a small animal model. The liposomes were functionalized with Env trimers by a tag-free approach designed to enable a simplified GMP production. The pre-fusion conformation of the conjugated Env trimers was verified by immunogold electron microscopy (EM) imaging and flow cytometry. The liposomes induced strong activation of Env-specific B cells in vitro. In comparison to previously established anionic liposomes, cationic T helper liposomes were superior in CD4+ T cell activation after uptake by dendritic cells. Moreover, the T helper liposomes were able to target Env-specific B cells in secondary lymphoid organs after intramuscular injection. We also observed efficient T helper cell activation and proliferation in co-cultures with Env-specific B cells in the presence of cationic T helper liposomes. Mouse immunization experiments with cationic T helper liposomes further revealed a modulation of the Env-specific IgG subtype distribution and enhancement of the longevity of antibody responses by ovalbumin- and Hepatitis B (HBV)-specific T cell help. Thus, clinical evaluation of the concept of intrastructural help seems warranted.


Assuntos
Infecções por HIV , HIV-1 , Vacinas , Animais , Camundongos , Lipossomos/química , Anticorpos Anti-HIV , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Imunidade Humoral
5.
J Virol ; 97(10): e0063123, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796124

RESUMO

IMPORTANCE: The HIV-1 envelope glycoprotein (Env) is an essential component of the virus and has an exceedingly long cytoplasmic tail (CT). Previous studies have suggested that trafficking signals in the CT interact with host factors to regulate the incorporation of Env into particles. One particular area of interest is termed lentiviral lytic peptide 3 (LLP3), as small deletions in this region have been shown to disrupt Env incorporation. In this study, we identify a small region within LLP3 that regulates how Env associates with cellular recycling compartments. Mutants that reduced or eliminated Env from the recycling compartment also reduced Env incorporation into particles. These findings emphasize the importance of two tryptophan motifs in LLP3 for the incorporation of Env into particles and provide additional support for the idea that the CT interacts with host recycling pathways to determine particle incorporation.


Assuntos
Citoplasma , Endossomos , Glicoproteínas , HIV-1 , Triptofano , Montagem de Vírus , Produtos do Gene env do Vírus da Imunodeficiência Humana , Endossomos/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , HIV-1/fisiologia , Peptídeos/química , Peptídeos/metabolismo , Triptofano/metabolismo , Citoplasma/metabolismo , Humanos , Interações entre Hospedeiro e Microrganismos , Motivos de Aminoácidos , Transporte Proteico
6.
J Virol ; 97(3): e0185722, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36815832

RESUMO

Human immunodeficiency virus (HIV-1) entry into cells involves triggering of the viral envelope glycoprotein (Env) trimer ([gp120/gp41]3) by the primary receptor, CD4, and coreceptors, CCR5 or CXCR4. The pretriggered (State-1) conformation of the mature (cleaved) Env is targeted by broadly neutralizing antibodies (bNAbs), which are inefficiently elicited compared with poorly neutralizing antibodies (pNAbs). Here, we characterize variants of the moderately triggerable HIV-1AD8 Env on virions produced by an infectious molecular proviral clone; such virions contain more cleaved Env than pseudotyped viruses. We identified three types of cleaved wild-type AD8 Env trimers on virions: (i) State-1-like trimers preferentially recognized by bNAbs and exhibiting strong subunit association; (ii) trimers recognized by pNAbs directed against the gp120 coreceptor-binding region and exhibiting weak, detergent-sensitive subunit association; and (iii) a minor gp41-only population. The first Env population was enriched and the other Env populations reduced by introducing State-1-stabilizing changes in the AD8 Env or by treatment of the virions with crosslinker or the State-1-preferring entry inhibitor, BMS-806. These stabilized AD8 Envs were also more resistant to gp120 shedding induced by a CD4-mimetic compound or by incubation on ice. Conversely, a State-1-destabilized, CD4-independent AD8 Env variant exhibited weaker bNAb recognition and stronger pNAb recognition. Similar relationships between Env triggerability and antigenicity/shedding propensity on virions were observed for other HIV-1 strains. State-1 Envs on virions can be significantly enriched by minimizing the adventitious incorporation of uncleaved Env; stabilizing the pretriggered conformation by Env modification, crosslinking or BMS-806 treatment; strengthening Env subunit interactions; and using CD4-negative producer cells. IMPORTANCE Efforts to develop an effective HIV-1 vaccine have been frustrated by the inability to elicit broad neutralizing antibodies that recognize multiple virus strains. Such antibodies can bind a particular shape of the HIV-1 envelope glycoprotein trimer, as it exists on a viral membrane but before engaging receptors on the host cell. Here, we establish simple yet powerful assays to characterize the envelope glycoproteins in a natural context on virus particles. We find that, depending on the HIV-1 strain, some envelope glycoproteins change shape and fall apart, creating decoys that can potentially divert the host immune response. We identify requirements to keep the relevant envelope glycoprotein target for broad neutralizing antibodies intact on virus-like particles. These studies suggest strategies that should facilitate efforts to produce and use virus-like particles as vaccine immunogens.


Assuntos
HIV-1 , Vacinas , Vírion , Produtos do Gene env do Vírus da Imunodeficiência Humana , Humanos , Anticorpos Amplamente Neutralizantes/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Anticorpos Anti-HIV/imunologia , Conformação Proteica , Vacinas/metabolismo , Vacinas/farmacologia , Vírion/imunologia , Estabilidade Proteica , Desenvolvimento de Vacinas
7.
Nat Struct Mol Biol ; 29(11): 1080-1091, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36344847

RESUMO

Simian immunodeficiency viruses (SIVs) are lentiviruses that naturally infect non-human primates of African origin and seeded cross-species transmissions of HIV-1 and HIV-2. Here we report prefusion stabilization and cryo-EM structures of soluble envelope (Env) trimers from rhesus macaque SIV (SIVmac) in complex with neutralizing antibodies. These structures provide residue-level definition for SIV-specific disulfide-bonded variable loops (V1 and V2), which we used to delineate variable-loop coverage of the Env trimer. The defined variable loops enabled us to investigate assembled Env-glycan shields throughout SIV, which we found to comprise both N- and O-linked glycans, the latter emanating from V1 inserts, which bound the O-link-specific lectin jacalin. We also investigated in situ SIVmac-Env trimers on virions, determining cryo-electron tomography structures at subnanometer resolutions for an antibody-bound complex and a ligand-free state. Collectively, these structures define the prefusion-closed structure of the SIV-Env trimer and delineate variable-loop and glycan-shielding mechanisms of immune evasion conserved throughout SIV evolution.


Assuntos
Anticorpos Neutralizantes , HIV-1 , Animais , Microscopia Crioeletrônica , Macaca mulatta/metabolismo , HIV-1/metabolismo , Tomografia com Microscopia Eletrônica , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Anticorpos Anti-HIV
8.
J Virol ; 96(17): e0063622, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35980207

RESUMO

Binding to the host cell receptors CD4 and CCR5/CXCR4 triggers conformational changes in the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer that promote virus entry. CD4 binding allows the gp120 exterior Env to bind CCR5/CXCR4 and induces a short-lived prehairpin intermediate conformation in the gp41 transmembrane Env. Small-molecule CD4-mimetic compounds (CD4mcs) bind within the conserved Phe-43 cavity of gp120, near the binding site for CD4. CD4mcs like BNM-III-170 inhibit HIV-1 infection by competing with CD4 and by prematurely activating Env, leading to irreversible inactivation. In cell culture, we selected and analyzed variants of the primary HIV-1AD8 strain resistant to BNM-III-170. Two changes (S375N and I424T) in gp120 residues that flank the Phe-43 cavity each conferred an ~5-fold resistance to BNM-III-170 with minimal fitness cost. A third change (E64G) in layer 1 of the gp120 inner domain resulted in ~100-fold resistance to BNM-III-170, ~2- to 3-fold resistance to soluble CD4-Ig, and a moderate decrease in viral fitness. The gp120 changes additively or synergistically contributed to BNM-III-170 resistance. The sensitivity of the Env variants to BNM-III-170 inhibition of virus entry correlated with their sensitivity to BNM-III-170-induced Env activation and shedding of gp120. Together, the S375N and I424T changes, but not the E64G change, conferred >100-fold and 33-fold resistance to BMS-806 and BMS-529 (temsavir), respectively, potent HIV-1 entry inhibitors that block Env conformational transitions. These studies identify pathways whereby HIV-1 can develop resistance to CD4mcs and conformational blockers, two classes of entry inhibitors that target the conserved gp120 Phe-43 cavity. IMPORTANCE CD4-mimetic compounds (CD4mcs) and conformational blockers like BMS-806 and BMS-529 (temsavir) are small-molecule inhibitors of human immunodeficiency virus (HIV-1) entry into host cells. Although CD4mcs and conformational blockers inhibit HIV-1 entry by different mechanisms, they both target a pocket on the viral envelope glycoprotein (Env) spike that is used for binding to the receptor CD4 and is highly conserved among HIV-1 strains. Our study identifies changes near this pocket that can confer various levels of resistance to the antiviral effects of a CD4mc and conformational blockers. We relate the antiviral potency of a CD4mc against this panel of HIV-1 variants to the ability of the CD4mc to activate changes in Env conformation and to induce the shedding of the gp120 exterior Env from the spike. These findings will guide efforts to improve the potency and breadth of small-molecule HIV-1 entry inhibitors.


Assuntos
Antígenos CD4 , Farmacorresistência Viral , Glicoproteínas , Guanidinas , Indenos , Mutação , Produtos do Gene env do Vírus da Imunodeficiência Humana , Sítios de Ligação/genética , Antígenos CD4/química , Antígenos CD4/metabolismo , Farmacorresistência Viral/genética , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Guanidinas/química , Guanidinas/farmacologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/química , HIV-1/efeitos dos fármacos , HIV-1/metabolismo , Humanos , Indenos/química , Indenos/farmacologia , Conformação Proteica/efeitos dos fármacos , Receptores de HIV/química , Receptores de HIV/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
9.
Nanotechnology ; 33(48)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35882111

RESUMO

Two-component self-assembling virus-like particles (VLPs) are promising scaffolds for achieving high-density display of HIV-1 envelope (gp140) trimers, which can improve the induction of neutralising antibodies (NAbs). In this study gp140 was displayed on the surface of VLPs formed by the AP205 phage coat protein. The CAP256 SU gp140 antigen was selected as the patient who this virus was isolated from developed broadly neutralising antibodies (bNAbs) shortly after superinfection with this virus. The CAP256 SU envelope is also sensitive to several bNAbs and has shown enhanced reactivity for certain bNAb precursors. A fusion protein comprising the HIV-1 CAP256 SU gp140 and the SpyTag (ST) (gp140-ST) was produced in HEK293 cells, and trimers were purified to homogeneity using gel filtration. SpyCatcher (SC)-AP205 VLPs were produced inEscherichia coliand purified by ultracentrifugation. The gp140-ST trimers and the SC-AP205 VLPs were mixed in varying molar ratios to generate VLPs displaying the glycoprotein (AP205-gp140-ST particles). Dynamic light scattering, negative stain electron microscopy and 2D classification indicated that gp140-ST was successfully bound to the VLPs, although not all potential binding sites were occupied. The immunogenicity of the coupled VLPs was evaluated in a pilot study in rabbits. One group was injected four times with coupled VLPs, and the second group was primed with DNA vaccines expressing Env and a mosaic Gag, followed by modified vaccinia Ankara expressing the same antigens. The animals were then boosted twice with coupled VLPs. Encouragingly, gp140-ST displayed on SC-AP205 VLPs was an effective boost to heterologously primed rabbits, leading to induction of autologous Tier 2 neutralising antibodies in 2/5 rabbits. However, four inoculations of coupled VLPs alone failed to elicit any Tier 2 antibodies. These results demonstrate that the native-like structure of HIV-1 envelope trimers and selection of a geometrically-suitable nanoparticle scaffold to achieve a high-density display of the trimers are important considerations that could improve the effect of nanoparticle-displayed gp140.


Assuntos
HIV-1 , Nanopartículas , Vacinas , Animais , Anticorpos Amplamente Neutralizantes , Células HEK293 , Humanos , Projetos Piloto , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
10.
Chembiochem ; 23(16): e202200236, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35647713

RESUMO

Small molecule adjuvants are attractive for enhancing broad protection and durability of immune responses elicited by subunit vaccines. Covalent attachment of an adjuvant to an immunogen is particularly attractive because it simultaneously delivers both entities to antigen presenting cells resulting in more efficient immune activation. There is, however, a lack of methods to conjugate small molecule immune potentiators to viral glycoprotein immunogens without compromising epitope integrity. We describe herein a one-step enzymatic conjugation approach for the covalent attachment of small molecule adjuvants to N-linked glycans of viral glycoproteins. It involves the attachment of an immune potentiator to CMP-Neu5AcN3 by Cu(I)-catalyzed azide-alkyne 1,3-cycloaddition followed by sialyltransferase-mediated transfer to N-glycans of a viral glycoprotein. The method was employed to modify a native-like HIV envelope trimer with a Toll-like receptor 7/8 agonist. The modification did not compromise Env-trimer recognition by several broadly neutralization antibodies. Electron microscopy confirmed structural integrity of the modified immunogen.


Assuntos
Infecções por HIV , HIV-1 , Receptores Toll-Like , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Epitopos , Glicoproteínas , Anticorpos Anti-HIV , Humanos , Polissacarídeos/farmacologia , Receptores Toll-Like/agonistas , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
11.
Biochem Biophys Res Commun ; 612: 181-187, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35550505

RESUMO

The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) mediates host cell infection by binding to the cellular receptor CD4. Recombinant Env bound to CD4 has been explored for its potential as an HIV vaccine immunogen as receptor binding exposes otherwise shielded, conserved functional sites. Previous preclinical studies showed an interchain disulphide linkage facilitated between Env and 2dCD4S60C generates an immunogenic complex that elicits potent, broadly neutralizing antibodies (bNAbs) against clinically relevant HIV-1. This study investigated conformational dynamics of 2dCD4WT and 2dCD4S60C bound to an HIV-1C SOSIP.664 Env trimer using hydrogen-deuterium exchange mass spectrometry. The Env:2dCD4S60C complex maintains key contact residues required for MHCII and Env/gp120 binding and the residues encompassing Ibalizumab's epitope. Important residues remaining anchored, with an increased flexibility in surrounding regions, evidenced by the higher exchange seen in flanking residues compared to Env:2dCD4WT. While changes in Env:2dCD4S60C dynamics in domain 1 were moderate, domain 2 exhibited greater variation. Lack of stability-inducing H-bonds in these allosteric sites suggest the improved immunogenicity of Env:2dCD4S60C result from exposed CD4 residues providing diverse/novel antigenic targets for the development of potent, broadly neutralizing Ibalizumab-like antibodies.


Assuntos
HIV-1 , Produtos do Gene env do Vírus da Imunodeficiência Humana , Anticorpos Neutralizantes , Antígenos CD4 , Proteína gp120 do Envelope de HIV , HIV-1/metabolismo , Humanos , Multimerização Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
12.
J Biol Chem ; 298(4): 101819, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35283191

RESUMO

The conformationally dynamic HIV-1 envelope trimer (Env) is the target of broadly neutralizing antibodies (bnAbs) that block viral entry. Single-molecule Förster resonance energy transfer (smFRET) has revealed that HIV-1 Env exists in at least three conformational states on the virion. Prior to complete host-receptor engagement (State 3), Env resides most prevalently in the smFRET-defined State 1, which is preferentially recognized by most bnAbs that are elicited by natural infection. smFRET has also revealed that soluble trimers containing prefusion-stabilizing disulfide and isoleucine-to-proline substitutions reside primarily in State 2, which is a required intermediate between States 1 and 3. While high-resolution Env structures have been determined for States 2 and 3, the structure of these trimers in State 1 is unknown. To provide insight into the State 1 structure, here we characterized antigenic differences between smFRET-defined states and then correlated these differences with known structural differences between States 2 and 3. We found that cell surface-expressed Env was enriched in each state using state-enriching antibody fragments or small-molecule virus entry inhibitors and then assessed binding to HIV-1 bnAbs preferentially binding different states. We observed small but consistent differences in binding between Env enriched in States 1 and 2, and a more than 10-fold difference in binding to Env enriched in these states versus Env enriched in State 3. We conclude that structural differences between HIV-1 Env States 1 and 3 are likely more than 10-fold greater than those between States 1 and 2, providing important insight into State 1.


Assuntos
Infecções por HIV , HIV-1 , Produtos do Gene env do Vírus da Imunodeficiência Humana , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/metabolismo , Anticorpos Anti-HIV , HIV-1/metabolismo , Humanos , Conformação Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
13.
J Virol ; 96(8): e0166821, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35343783

RESUMO

Binding to the receptor, CD4, drives the pretriggered, "closed" (state-1) conformation of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer into more "open" conformations (states 2 and 3). Broadly neutralizing antibodies, which are elicited inefficiently, mostly recognize the state-1 Env conformation, whereas the more commonly elicited poorly neutralizing antibodies recognize states 2/3. HIV-1 Env metastability has created challenges for defining the state-1 structure and developing immunogens mimicking this labile conformation. The availability of functional state-1 Envs that can be efficiently cross-linked at lysine and/or acidic amino acid residues might assist these endeavors. To that end, we modified HIV-1AD8 Env, which exhibits an intermediate level of triggerability by CD4. We introduced lysine/acidic residues at positions that exhibit such polymorphisms in natural HIV-1 strains. Env changes that were tolerated with respect to gp120-gp41 processing, subunit association, and virus entry were further combined. Two common polymorphisms, Q114E and Q567K, as well as a known variant, A582T, additively rendered pseudoviruses resistant to cold, soluble CD4, and a CD4-mimetic compound, phenotypes indicative of stabilization of the pretriggered state-1 Env conformation. Combining these changes resulted in two lysine-rich HIV-1AD8 Env variants (E.2 and AE.2) with neutralization- and cold-resistant phenotypes comparable to those of natural, less triggerable tier 2/3 HIV-1 isolates. Compared with these and the parental Envs, the E.2 and AE.2 Envs were cleaved more efficiently and exhibited stronger gp120-trimer association in detergent lysates. These highly cross-linkable Envs enriched in a pretriggered conformation should assist characterization of the structure and immunogenicity of this labile state. IMPORTANCE The development of an efficient vaccine is critical for combating HIV-1 infection worldwide. However, the instability of the pretriggered shape (state 1) of the viral envelope glycoprotein (Env) makes it difficult to raise neutralizing antibodies against HIV-1. Here, by introducing multiple changes in Env, we derived two HIV-1 Env variants that are enriched in state 1 and can be efficiently cross-linked to maintain this shape. These Env complexes are more stable in detergent, assisting their purification. Thus, our study provides a path to a better characterization of the native pretriggered Env, which should assist vaccine development.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Produtos do Gene env do Vírus da Imunodeficiência Humana , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Detergentes , Glicoproteínas/química , Glicoproteínas/imunologia , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/prevenção & controle , HIV-1/química , HIV-1/genética , HIV-1/imunologia , Humanos , Lisina , Conformação Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
14.
Cell ; 185(4): 641-653.e17, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35123651

RESUMO

HIV-1 Env mediates viral entry into host cells and is the sole target for neutralizing antibodies. However, Env structure and organization in its native virion context has eluded detailed characterization. Here, we used cryo-electron tomography to analyze Env in mature and immature HIV-1 particles. Immature particles showed distinct Env positioning relative to the underlying Gag lattice, providing insights into long-standing questions about Env incorporation. A 9.1-Å sub-tomogram-averaged reconstruction of virion-bound Env in conjunction with structural mass spectrometry revealed unexpected features, including a variable central core of the gp41 subunit, heterogeneous glycosylation between protomers, and a flexible stalk that allows Env tilting and variable exposure of neutralizing epitopes. Together, our results provide an integrative understanding of HIV assembly and structural variation in Env antigen presentation.


Assuntos
Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Vírion/ultraestrutura , Produtos do Gene env do Vírus da Imunodeficiência Humana/ultraestrutura , Produtos do Gene gag do Vírus da Imunodeficiência Humana/ultraestrutura , 2,2'-Dipiridil/análogos & derivados , 2,2'-Dipiridil/farmacologia , Sequência de Aminoácidos , Dissulfetos/farmacologia , Epitopos/química , Células HEK293 , Proteína gp41 do Envelope de HIV/química , Humanos , Espectrometria de Massa com Troca Hidrogênio-Deutério , Modelos Moleculares , Testes de Neutralização , Peptídeos/química , Polissacarídeos/química , Domínios Proteicos , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
15.
Nat Commun ; 13(1): 695, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121758

RESUMO

HIV Envelope (Env) is the main vaccine target for induction of neutralizing antibodies. Stabilizing Env into native-like trimer (NLT) conformations is required for recombinant protein immunogens to induce autologous neutralizing antibodies(nAbs) against difficult to neutralize HIV strains (tier-2) in rabbits and non-human primates. Immunizations of mice with NLTs have generally failed to induce tier-2 nAbs. Here, we show that DNA-encoded NLTs fold properly in vivo and induce autologous tier-2 nAbs in mice. DNA-encoded NLTs also uniquely induce both CD4 + and CD8 + T-cell responses as compared to corresponding protein immunizations. Murine neutralizing antibodies are identified with an advanced sequencing technology. The structure of an Env-Ab (C05) complex, as determined by cryo-EM, identifies a previously undescribed neutralizing Env C3/V5 epitope. Beyond potential functional immunity gains, DNA vaccines permit in vivo folding of structured antigens and provide significant cost and speed advantages for enabling rapid evaluation of new HIV vaccines.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Vacinas de DNA/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/administração & dosagem , Animais , Anticorpos Neutralizantes/ultraestrutura , Antígenos Virais/imunologia , Linhagem Celular Tumoral , Microscopia Crioeletrônica , ELISPOT , Epitopos/imunologia , Células HEK293 , Anticorpos Anti-HIV/ultraestrutura , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Camundongos Endogâmicos BALB C , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Vacinação/métodos , Vacinas de DNA/administração & dosagem , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
16.
Cell Rep ; 38(5): 110296, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108536

RESUMO

Here, we present ultrastructural analyses showing that incoming HIV are captured near the lymphocyte surface in a virion-glycan-dependent manner. Biophysical analyses show that removal of either virion- or cell-associated N-glycans impairs virus-cell binding, and a similar glycan-dependent relationship is observed between purified HIV envelope (Env) and primary T cells. Trimming of N-glycans from either HIV or Env does not inhibit protein-protein interactions. Glycan arrays reveal HIV preferentially binds to N-acetylglucosamine and mannose. Interfering with these glycan-based interactions reduces HIV infectivity. These glycan interactions are distinct from previously reported glycan-lectin and non-specific electrostatic charge-based interactions. Specific glycan-glycan-mediated attachment occurs prior to virus entry and enhances efficiency of infection. Binding and fluorescent imaging data support glycan-glycan interactions as being responsible, at least in part, for initiating contact between HIV and the host cell, prior to viral Env-cellular CD4 engagement.


Assuntos
Anticorpos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , Polissacarídeos/metabolismo , Internalização do Vírus/efeitos dos fármacos , Anticorpos Neutralizantes/metabolismo , Membrana Celular/metabolismo , Glicosilação/efeitos dos fármacos , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Humanos , Vírion/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
17.
Acta Biomater ; 140: 586-600, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968725

RESUMO

The usage of antigen-functionalized nanoparticles has become a major focus in the field of experimental HIV-1 vaccine research during the last decade. Various molecular mechanisms to couple native-like trimers of the HIV-1 envelope protein (Env) onto nanoparticle surfaces have been reported, but many come with disadvantages regarding the coupling efficiency and stability. In this study, a short amino acid sequence ("aldehyde-tag") was introduced at the C-terminus of a conformationally stabilized native-like Env. The post-translational conversion of a tag-associated cysteine to formylglycine creates a site-specific aldehyde group without alteration of the Env antigenicity. This aldehyde group was further utilized for bioconjugation of Env trimers. We demonstrated that the low acidic environment necessary for this bioconjugation is not affecting the trimer conformation. Furthermore, we developed a two-step coupling method for pH-sensitive nanoparticles. To this end, we conjugated aldehyde-tagged Env with Propargyl-PEG3-aminooxy linker (oxime ligation; Step-one) and coupled these conjugates by copper-catalyzed azide-alkyne cycloaddition (Click reaction; Step-two) to calcium phosphate nanoparticles (CaPs) functionalized with terminal azide groups. CaPs displaying orthogonally arranged Env trimers on their surface (o-CaPs) were superior in activation of Env-specific B-cells (in vitro) and induction of Env-specific antibody responses (in vivo) compared to CaPs with Env trimers coupled in a randomly oriented manner. Taken together, we present a reliable method for the site-specific, covalent coupling of HIV-1 Env native-like trimers to the surface of nanoparticle delivery systems. This method can be broadly applied for functionalization of nanoparticle platforms with conformationally stabilized candidate antigens for both vaccination and diagnostic approaches. STATEMENT OF SIGNIFICANCE: During the last decade antigen-functionalized nanoparticles have become a major focus in the field of experimental HIV-1 vaccines. Rational design led to the production of conformationally stabilized HIV-1 envelope protein (Env) trimers - the only target for the humoral immune system. Various molecular mechanisms to couple Env trimers onto nanoparticle surfaces have been reported, but many come with disadvantages regarding the coupling efficiency and stability. In this paper, we describe a highly selective bio-conjugation of Env trimers to the surface of medically relevant calcium phosphate nanoparticles. This method maintains the native-like protein conformation and has a broad potential application in functionalization of nanoparticle platforms with stabilized candidate antigens (including stabilized spike proteins of coronaviruses) for both vaccination and diagnostic approaches.


Assuntos
HIV-1 , Nanopartículas , Aldeídos , Fosfatos de Cálcio , Glicoproteínas , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
18.
J Virol ; 96(1): e0134321, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34668778

RESUMO

Longitudinal studies in HIV-1-infected individuals have indicated that 2 to 3 years of infection are required to develop broadly neutralizing antibodies. However, we have previously identified individuals with broadly neutralizing activity (bNA) in early HIV-1 infection, indicating that a vaccine may be capable of bNA induction after short periods of antigen exposure. Here, we describe 5 HIV-1 envelope sequences from individuals who have developed bNA within the first 100 days of infection (early neutralizers) and selected two of them to design immunogens based on HIV-1-Gag virus-like particles (VLPs). These VLPs were homogeneous and incorporated the corresponding envelopes (7 to 9 µg of gp120 in 1010 VLPs). Both envelopes (Envs) bound to well-characterized broadly neutralizing antibodies (bNAbs), including trimer-specific antibodies (PGT145, VRC01, and 35022). For immunogenicity testing, we immunized rabbits with the Env-VLPs or with the corresponding stabilized soluble envelope trimers. A short immunization protocol (105 days) was used to recapitulate the early nAb induction observed after HIV-1 infection in these two individuals. All VLP and trimeric envelope immunogens induced a comparably strong anti-gp120 response despite having immunized rabbits with 30 times less gp120 in the case of the Env-VLPs. In addition, animals immunized with VLP-formulated Envs induced antibodies that cross-recognized the corresponding soluble stabilized trimer and vice versa, even though no neutralizing activity was observed. Nevertheless, our data may provide a new platform of immunogens, based on HIV-1 envelopes from patients with early broadly neutralizing responses, with the potential to generate protective immune responses using vaccination protocols similar to those used in classical preventive vaccines. IMPORTANCE It is generally accepted that an effective HIV-1 vaccine should be able to induce broad-spectrum neutralizing antibodies. Since most of these antibodies require long periods of somatic maturation in vivo, several groups are developing immunogens, based on the HIV envelope protein, that require complex and lengthy immunization protocols that would be difficult to implement in the general population. Here, we show that rabbits immunized with new envelopes (VLP formulated) from two individuals who demonstrated broadly neutralizing activity very early after infection induced specific HIV-1 antibodies after a short immunization protocol. This evidence provides the basis for generating protective immune responses with classic vaccination protocols with vaccine prototypes based on HIV envelope sequences from individuals who have developed early broadly neutralizing responses.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/imunologia , Adulto , Formação de Anticorpos , Anticorpos Amplamente Neutralizantes/imunologia , Contagem de Linfócito CD4 , Relação CD4-CD8 , Mapeamento de Epitopos , Epitopos/imunologia , Feminino , Anticorpos Anti-HIV/química , Infecções por HIV/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunização , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
19.
J Virol ; 96(1): e0155221, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34669426

RESUMO

The human immunodeficiency virus type 1 (HIV-1) trimeric envelope glycoprotein (Env) is heavily glycosylated, creating a dense glycan shield that protects the underlying peptidic surface from antibody recognition. The absence of conserved glycans, due to missing potential N-linked glycosylation sites (PNGS), can result in strain-specific, autologous neutralizing antibody (NAb) responses. Here, we sought to gain a deeper understanding of the autologous neutralization by introducing holes in the otherwise dense glycan shields of the AMC011 and AMC016 SOSIP trimers. Specifically, when we knocked out the N130 and N289 glycans, which are absent from the well-characterized B41 SOSIP trimer, we observed stronger autologous NAb responses. We also analyzed the highly variable NAb responses induced in rabbits by diverse SOSIP trimers from subtypes A, B, and C. Statistical analysis, using linear regression, revealed that the cumulative area exposed on a trimer by glycan holes correlates with the magnitude of the autologous NAb response. IMPORTANCE Forty years after the first description of HIV-1, the search for a protective vaccine is still ongoing. The sole target for antibodies that can neutralize the virus are the trimeric envelope glycoproteins (Envs) located on the viral surface. The glycoprotein surface is covered with glycans that shield off the underlying protein components from recognition by the immune system. However, the Env trimers of some viral strains have holes in the glycan shield. Immunized animals developed antibodies against such glycan holes. These antibodies are generally strain specific. Here, we sought to gain a deeper understanding of what drives these specific immune responses. First, we show that strain-specific neutralizing antibody responses can be increased by creating artificial holes in the glycan shield. Second, when studying a diverse set of Env trimers with different characteristics, we found that the surface area of the glycan holes contributes prominently to the induction of strain-specific neutralizing antibodies.


Assuntos
Infecções por HIV/imunologia , HIV-1/imunologia , Polissacarídeos/metabolismo , Multimerização Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Vacinas contra a AIDS/imunologia , Aminoácidos/química , Aminoácidos/imunologia , Aminoácidos/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Antígenos Virais/imunologia , Glicosilação , Anticorpos Anti-HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/genética , Interações Hospedeiro-Patógeno , Humanos , Imunização , Modelos Moleculares , Conformação Proteica , Multimerização Proteica/imunologia , Coelhos , Deleção de Sequência , Relação Estrutura-Atividade , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
20.
Microbiol Spectr ; 9(3): e0165321, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34935422

RESUMO

HIV-1 envelope glycoprotein (Env) interacts with cell surface receptors and induces membrane fusion to enter cells and initiate infection. HIV-1 Env on virions comprises trimers of the gp120 and gp41 subunits. The polar region (PR) in the N-terminus of gp41 is composed of 17 conserved residues, including seven polar amino acids. We have reported that the PR is crucial for Env trimer stability and fusogenicity. Mutations of three highly conserved residues (S534P, T536A, or T538A) in the PR of HIV-1NL4-3 significantly decrease or eliminate viral infectivity due to defective fusion and increased gp120 shedding. To identify compensatory Env mutations that restore viral infectivity, we infected a CD4+ T-cell line with PR mutants pseudotyped with wild-type (WT) HIV-1 Env or vesicular stomatitis virus envelope glycoprotein (VSV-G). We found that PR mutant-infected CD4+ T-cells produced infectious viruses at 7 days postinfection (dpi). Sequencing of the env cDNA from cells infected with the recovered HIV-1 revealed that the S534P mutant reverted to serine or threonine at residue 534. Interestingly, the combined PR-mutant HIV-1 (S534P/T536A or S534P/T536A/T538A) recovered its infectivity and reverted to S534, but maintained the T536A or T538A mutation, suggesting that HIV-1 replication in CD4+ T-cells can tolerate T536A and T538A Env mutations, but not S534P. Moreover, VSV-G-pseudotyped HIV-1 mutants with a fusion-defective Env also recovered infectivity in CD4+ T-cells through reverted Env mutations. These new observations help define the Env residues critical for HIV-1 infection and demonstrate that Env-defective HIV-1 mutants can rapidly regain replication competency in CD4+ T-cells. IMPORTANCE Our previous mutagenesis study revealed that serine at position 534 of HIV-1 Env is critical for viral infectivity. We found that HIV-1 Env containing serine to proline mutation at position 534 (S534P) are incapable of supporting virus-cell and cell-cell fusion. To investigate whether these mutant viruses can recover infectivity and what amino acid changes account for recovered infectivity, we infected CD4+ T-cells with Env-mutant HIV-1 pseudotyped with WT HIV-1 Env or VSV-G and monitored cultures for the production of infectious viruses. Our results showed that most of the pseudotyped viruses recovered their infectivity within 1-week postinfection, and all the recovered viruses mutated proline at position 534. These observations help define the Env residues critical for HIV-1 replication. Because Env-defective HIV-1 mutants can rapidly regain replication competency in CD4+ T-cells, it is important to carefully monitor viral mutations for biosafety consideration when using HIV-1-derived lentivirus vectors pseudotyped with Env.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/virologia , HIV-1/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Motivos de Aminoácidos , Linhagem Celular , HIV-1/química , HIV-1/fisiologia , Humanos , Mutação , Replicação Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...